3. PROBABILITY DISTRIBUTIONS: $P_1(\varepsilon > \varepsilon_0)_{A,B}$, $(0 < \alpha < .2)$ We are now ready to obtain the first-order exceedance probabilities $P_1(E > E_0)$, cf. (2.22b), when an independent gaussian component is present, so that Eqs. (2.78), and (2.90), (2.93) apply respectively for the characteristic functions for Class A and B interference, to be used in (2.22b). First, however, it is convenient to introduce the following normalizations: Class A: $$\varepsilon_0 = \varepsilon_0 / \sqrt{2\Omega_{2A}(1+\Gamma_A^{\dagger})}$$; $\varepsilon = \varepsilon / \sqrt{2\Omega_{2A}(1+\Gamma_A^{\dagger})}$ (3.1) with $$\Omega_{2A} \equiv A_{\infty,A} \langle \hat{B}_{0,A}^2 \rangle / 2$$; $\Gamma_{A}^{i} \equiv \sigma_{G}^2 / \Omega_{2A}$: "impulsive" intensity (3.1a) For Class B noise we use (5.14), viz., Class B: $$\mathcal{E}_{o} = \frac{E_{o}}{\sqrt{2\Omega_{2B}(1+\Gamma_{B}^{T})}}$$; $\mathcal{E} = \frac{E}{\sqrt{2\Omega_{2B}(1+\Gamma_{B}^{T})}}$, (3.2) where, cf. (5.14a), we have $$\Omega_{2B} = \left(\frac{A_{\infty,B} \langle \hat{B}_{0,B}^2 \rangle}{2}\right); \qquad \Gamma_{B}^{\dagger} = \sigma_{G}^2 / \Omega_{2B}$$ (3.2a) which are directly analogous to the corresponding parameters above for Class A noise. Then, writing $$a_{AorB} = \left\{ 2\Omega_2(1+r') \right\}^{-1/2}, A \text{ or } B,$$ (3.3) we see that $\mathcal{E} = aE$, $\mathcal{E}_0 = aE_0$ in each case, and $\therefore r = a\lambda$ in (2.78), (2.90) and (2.93), so that the desired exceedance probabilities now have the generic form $$P_{1}(\mathcal{E} > \mathcal{E}_{o})_{A,B} = 1 - \mathcal{E}_{o} \int_{0}^{\infty} J_{1}(\lambda \mathcal{E}_{o}) \hat{F}_{1}(ia\lambda)_{A,B} d\lambda, \qquad (3.4)$$ cf. (2.22b), where, of course, the specific parameter values in the normalization factor \underline{a} have different forms for the Class A and B interference. #### 3.1 Class A Interference: Applying (3.1) - (3.3) to (2.78) and omitting the "correction terms" allows us to write the Class A c.f. in the following desired approximate form: $$\hat{F}_{1}(ia\lambda)_{A} = e^{-A_{A}} \sum_{m=0}^{\infty} \frac{A_{A}^{m}}{m!} e^{-\hat{\sigma}_{mA}^{2} a^{2} \lambda^{2}/2}; \quad 2\hat{\sigma}_{mA}^{2} = (m/A_{A} + \Gamma_{A}^{1})/(1 + \Gamma_{A}^{1})$$ (3.5) cf. Eq. $(3.17)^*$ [Middleton, 1974], and we henceforth abbreviate $A_{\infty,A} = A_A$, etc. Applying (3.5) to (3.4) then gives us $$P_{1}(\mathcal{E} > \mathcal{E}_{0})_{A} \simeq 1 - \mathcal{E}_{0}e^{-A_{A}} \sum_{m=0}^{\infty} \frac{A_{A}^{m}}{m!} \int_{0}^{\infty} J_{1}(\mathcal{E}_{0}\lambda) e^{-\hat{\sigma}_{mA}^{2}a^{2}\lambda^{2}/2} d\lambda, \qquad (3.6)$$ which with the help of (2.25) and the relation $_1F_1(1;2;-x) = (1-e^{-x})/x$, [Eq. A.1-19b, Middleton, 1960], becomes** $$P_{1}(\mathcal{E} > \mathcal{E}_{o})_{A} \simeq 1 - e^{-A_{A}} \sum_{m=0}^{\infty} \frac{A_{A}^{m}}{m!} \frac{\mathcal{E}_{o}^{2}}{2\hat{\sigma}_{mA}^{2}} {}_{1}F_{1}(1;2;-\mathcal{E}_{o}^{2}/2\hat{\sigma}_{mA}^{2})$$ $$\simeq e^{-A_{A}} \sum_{m=0}^{\infty} \frac{A_{A}^{m}}{m!} e^{-\mathcal{E}_{o}^{2}/2\hat{\sigma}_{mA}^{2}}$$ (3.7a) $$(3.7a)$$ ^{*} Note that $2\hat{\sigma}_{mA}^2$ here is equal to σ_{mA}^2 , cf. Eq. (5.7), of Middleton (1974). ^{**} This PD is properly normalized for $\langle \mathcal{E}^2 \rangle_A = 1$, cf. remarks following Eq. (2.78). for the desired approximation* of P_{1-A} . We observe at once that the Class A exceedance probability P_{1-A} is (primarily) a weighted sum of rayleigh probability distributions (P.D.'s), each with a variance which increases with order (m). Note from (3.7) that $$P_1(\varepsilon \ge 0)_A = 1; P_1(\varepsilon > \varepsilon \to \infty)_A = 0;$$ $$P_{1}(\varepsilon > \varepsilon_{0} = 0)_{A} = 1 - \left(e^{-A_{A}} \sum_{m=0}^{\infty} \frac{(1+\Gamma_{A}^{i}) A_{A}^{m}}{(\Gamma_{A}^{i}+m/A_{A}) m!}\right) \varepsilon_{0}^{2},$$ (3.8) and since each term of (3.7b) is positive and the exponential less than unity, $0 \le P_{1-A} \le 1$, also with P_{1-A} monotonically decreasing as $\mathcal{E}_0 \to \infty$, all as required for a proper (exceedance) P.D. Furthermore, the expected "rayleigh"-form of the P.D. is exhibited in (3.8) for small thresholds, e.g., $$P_1(\mathcal{E} > \mathcal{E}_0)_A = 1 - B_A \mathcal{E}_0^2 = e^{-B_A \mathcal{E}_0^2} ; B_A \mathcal{E}_0^2 << 1,$$ (3.9a) where explicitly now $$B_{A} = (1+\Gamma_{A}^{1})e^{-A_{A}} \sum_{m=0}^{\infty} \frac{A_{A}^{m+1}}{m!} \frac{1}{(m+A_{A}\Gamma_{A}^{1})}$$, which depends, of course, on the Impulsive Index A_A and on the intensity ratio Γ_A^i , cf. (3.1a). ^{*} The correction terms (containing \hat{C}_4 , \hat{C}_6 , etc.) in the c.f., and hence in the P.D., may become important for extremely large \mathcal{E}_0 and very small values of the Index AA, although present experimental results, and theory, indicate that the principal effects for large values of \mathcal{E}_0 are satisfactorily accounted for by the approximation (3.7). We reserve to a later study the investigation of these effects. Figs. 3.1II and 3.2II, based on (3.7) show some typical distributions P_{1-A} vs. threshold \mathcal{E}_{o} , with Γ_{A}^{1} and A_{A} respectively as parameters. As expected, these PD's are highly nonrayleigh* for the rarer "events", e.g. those which exceed the larger thresholds \mathcal{E}_{0} , while the rayleigh forms appear for the less rare events (\mathcal{E}_{o} small), also as expected, cf. (3.9). Thus while the slope $(dP_1/d\mathcal{E}_0)$ is a constant -2 ($\equiv e^{-x^2}$) for the small amplitudes on these log vs. log2 probability scales, it is an (approximate) -1.2 for $\Gamma' = 10^{-4}$, $A_A = 10^{-1}$ for $E_O \to \infty$, i.e. a fall-off $(\equiv e^{-x(1.2)})_{of} P_{1-A}$ at large $\mathcal{E}_{\mathbf{c}}$ somewhat faster than exponential, which latter is consistent with the required existence of all moments, cf. Sec. 5. Different values of A_A , Γ_A^1 lead to different limiting slopes as $\mathcal{E}_0 \to \infty$, but all are dominated by the exponential type of fall-off. In addition, as the relative size of the gaussian component increases (increasing $\Gamma_{A}^{\, {}_{}})$ so does the threshold $\mathcal{E}_{_{\! O}}$ rise, above which the nonrayleigh effects appear. Similarly, as the Impulsive Index $\boldsymbol{A}_{\boldsymbol{A}}$ increases, i.e. the envelope distribution approaches eventually the limiting rayleigh form (2.57b) [with (2.53a)] as $A_A \rightarrow \infty$, the very steep "neck" of the curve becomes less extensive and shifts to the larger probabilities (lower \mathcal{E}_{0}), also as expected. In the limit ${\rm A}_{\rm A}$ \rightarrow ∞ this "neck" disappears entirely and the straight-line (slope-2) rayleigh distribution appears, for all $\mathcal{E}_{_{\! O}}.$ [Development of these numerical results to a much more extensive and fine grid of parameter values is planned for a later Report.] ## 3.2 Class B Interference (0 < α < 2): Applying the normalizations (3.2)-(3.3) to (2.90), (2.93) now, for the two c.f.'s which approximate the Class B interference, we obtain explicitly** ^{*} For envelopes E here, e.g., equivalently nongaussian for the corresponding instantaneous amplitudes X [Middleton, 1974]. ^{**} For compactness, we set $A_{\infty,B} \equiv A_B$, henceforth, cf. (3.5) et seq. above . Figure 3.1 (II). The envelope distribution [Prob($\mathscr{E} > \mathscr{E}_0$)] calculated for Class A interference for A_A = 0.1 and various Γ_A from eq. (3.7b). Figure 3.2 (II). The envelope distribution [Prob(\mathcal{E} > \mathcal{E}_0)] calculated for Class A interference for Γ_A = 10⁻⁴ and various A_A from eq. (3.7b). $$\hat{F}_{1}(ia\lambda)_{B-I} \stackrel{\cdot}{=} e^{-b_{1}\alpha^{A}B} a^{\alpha}\lambda^{\alpha} - \Delta\sigma_{G}^{2}a^{2}\lambda^{2}/2 \qquad (3.10a)$$ $$\hat{F}_{1}(ia\lambda)_{B-II} = e^{-A_{B}} \cdot exp[A_{B}e^{-b_{2\alpha}a^{2}\lambda^{2}/2} - \sigma_{G}^{2}a^{2}\lambda^{2}/2].$$ (3.10b) These, in turn are applied to (3.4) to give us $P_{1-1,II}$ respectively. Starting with (3.10a), we expand the exponential in λ^{α} and use (2.55) to get $$P_{1}(\mathcal{E} > \mathcal{E}_{0})_{B-I} \simeq 1 - \mathcal{E}_{0} \sum_{n=0}^{\infty} \frac{\left(b_{1}_{\alpha}A_{B}^{\alpha}a^{\alpha}\right)^{n}}{n!} (-1)^{n} \int_{0}^{\infty} \lambda^{n\alpha} J_{1}(\lambda \mathcal{E}_{0}) e^{-\Delta\sigma_{G}^{2}a^{2}\lambda^{2}/2} d\lambda$$ $$= \hat{P}_{1}(\hat{\mathcal{E}} > \hat{\mathcal{E}}_{0}) \simeq 1 - \hat{\mathcal{E}}_{0}^{2} \sum_{n=0}^{\infty} \frac{\left(-1\right)^{n} \hat{A}_{\alpha}^{n}}{n!} \Gamma(1 + \frac{\alpha n}{2}) \Gamma_{1}(1 + \frac{\alpha n}{2}; 2; -\hat{\mathcal{E}}_{0}^{2}),$$ with $$\hat{\mathcal{E}}_{0} = (\mathcal{E}_{0}N_{I})/2G_{B}; \hat{A}_{\alpha} = A_{\alpha}/2^{\alpha}G_{B}^{\alpha}, \qquad [\mathcal{E}_{0} \rightarrow \mathcal{E}_{0}N_{I} \text{ in (3.11a)}], \qquad (3.11c)$$ $$A_{\alpha} = 2^{\alpha}b_{1\alpha}a^{\alpha}A_{B} = 2^{\alpha}b_{1\alpha}A_{B}/[2\Omega_{2B}(1+\Gamma_{B}^{\dagger})]^{\alpha/2} = \frac{2\Gamma(1-\alpha/2)}{\Gamma(1+/2)}A_{B}\left(\frac{\hat{B}_{0,B}}{\sqrt{2\Omega_{2B}(1+\Gamma_{B}^{\dagger})}}\right)^{\alpha}\right)$$ and (3.12a) $G_{R}^{2} = \frac{1}{4} (1 + \Gamma_{R}^{i})^{-1} (\frac{4 - \alpha}{2 - \alpha} + \Gamma_{R}^{i}) , \qquad (3.12b)$ cf. (2.88a,b,c), (3.3a), where N_I is a scaling factor which scales P ₁-(B-I), W ₁-(B-I) to insure that $\langle \mathcal{E}^{2} \rangle_{B}$ = 1, cf. (2.94) ff, where 2 _B $_{\Delta}^{\alpha}$ _G $_{\Xi}$ = 2G $_{B}^{2}$. The quantity $^{\hat{A}}$ _{α} is the Effective Class B Impulsive Index, which is proportional to the Impulsive Index A_B, for this Class B interference. In addition, it depends spatially on the spatially sensitive parameter, $^{\alpha}$, and on the relative gauss component C _B, (3.2a). With the help of Kummer's transformation [Middleton, 1960, Section A.1.2, p. 1073, Eq. A.1-17] we can write (3.11b) alternatively as $$\widehat{P}_{1}(\widehat{\mathcal{E}} > \widehat{\mathcal{E}}_{0})_{B-1} \simeq e^{-\widehat{\mathcal{E}}_{0}^{2}} \left\{ 1 - \widehat{\mathcal{E}}_{0}^{2} \sum_{n=1}^{\infty} \frac{(-1)^{n} \widehat{A}_{\alpha}^{n}}{n!} \Gamma(1 + \frac{\alpha n}{2})_{1} F_{1}(1 - \frac{\alpha n}{2}; 2; \widehat{\mathcal{E}}_{0}^{2}) \right\}, \tag{3.13}$$ where we have used Eq. (A.1-19b) [Middleton, 1960]. For large \mathcal{E}_0 we obtain formally, with the help of the asymptotic relation [Middleton, 1960, (A.1-16b), p. 1073], $${}_{1}F_{1}(\alpha;\beta;-x) \stackrel{\Gamma(\beta)}{\sim} {}_{\Gamma(\beta-\alpha)} x^{-\alpha} \left[1 + \frac{\alpha(\alpha-\beta+1)}{1!x} + \frac{\alpha(\alpha+1)(\alpha-\beta+1)(\alpha-\beta+2)}{2!x^{2}} + \ldots \right], \tag{3.14}$$ the following expression for P_1 : $$\widehat{P}_{1}(\widehat{\mathcal{E}} > \widehat{\mathcal{E}}_{0})_{B-1} \simeq \sum_{n=1}^{\infty} \frac{\widehat{A}_{\alpha}^{n}(-1)^{n+1}}{n!} \frac{\Gamma(1+\frac{\alpha n}{2})}{\Gamma(1-\frac{\alpha n}{2})} \widehat{\mathcal{E}}_{0}^{-n\alpha} \left[1 + \frac{(1+\alpha n/2)(\alpha n)}{2\widehat{\mathcal{E}}_{0}^{2}} + \ldots\right],$$ $$\widehat{\mathcal{E}}_{0}^{2} >> 1. \tag{3.15}$$ This shows that $\mathcal{E}_0^{\text{im}} P_{1-I} \to 0 (\mathcal{E}_0^{-\alpha}) \to 0$. However, as explained in A, Section 2.7, for \mathcal{E}_0 greater than some (large) value \mathcal{E}_B , which is determined from Eq. (3.19e) below, we must use the second form of c.f., (3.10b). Figs.3.3II,3.4II here are based on (3.11b), (3.15), and are valid representations, provided \mathcal{E}_0 is not too large, e.g. $\mathcal{E}_0 \leq \mathcal{E}_B$. For the "rare events", or large \mathcal{E}_0 , we apply (3.10b) to (3.4), as discussed earlier (cf. A, Sec. 2.7), to obtain $$P_{1}(\mathcal{E} > \mathcal{E}_{0})_{V-II} \simeq 1-\mathcal{E}_{0}e^{-A_{B}} \sum_{m=0}^{\infty} \frac{A_{B}^{m}}{m!} \int_{0}^{\infty} J_{1}(\mathcal{E}_{0}\lambda)e^{-\hat{\sigma}_{mB}^{2}a^{2}\lambda^{2}/2} d\lambda, \qquad (3.16)$$ with $$2\hat{\sigma}_{mB}^{2} = 2(mb_{2\alpha} + \sigma_{G}^{2})a_{B}^{2} = (\frac{m}{\hat{A}_{B}} + \Gamma_{B}^{1})/(1 + \Gamma_{B}^{1}), \quad \hat{A}_{B} = A_{B}(\frac{2-\alpha}{4-\alpha})$$ (3.16a) from (3.2a),(2.88c), cf.(3.5), (3.6): thus $\hat{\sigma}_{mB}$ has the same <u>form</u> as $\hat{\sigma}_{mA}$, (3.6). Accordingly, we may use the result (3.7b), rewriting it here for this large-magnitude approximation for Class B noise, as* $$P_{1}(\varepsilon > \varepsilon_{0})_{B-II} \sim \frac{e^{-A_{B}}}{4G_{B}^{2}} \sum_{m=0}^{\infty} \frac{A_{B}^{m}}{m!} e^{-\varepsilon_{0}^{2}/2\hat{\sigma}_{mB}^{2}} , \quad (\varepsilon_{0} > \varepsilon_{B}) . \qquad (3.17)$$ ^{*} This PD is now properly normalized [remarks after (2.94) and], cf. (i), (3.17a,b), and discussion following. Figure 3.3 (II). The envelope distribution [Prob $(\hat{\mathcal{E}} > \hat{\mathcal{E}}_0)$] calculated for Class B interference for α = 1.0 for various \hat{A}_{α} from eqs. (3.11b, 3.15). Figure 3.4 (II). The envelope distribution [Prob($\widehat{\mathcal{E}} > \widehat{\mathcal{E}}_0$)] calculated for Class B interference for \widehat{A}_{α} = 1.0 for various α from eqs. (3.11b, 3.15). [Figures 3.1II, 3.2II for Class A interference illustrate the character of (3.17), which, of course, is only applicable here, Class B, for the larger values of \mathcal{E}_{0} (\mathcal{E}_{B}).] #### A. The Composite Approximation: The problem with the approximating results for P_{1-B} in the Case B model, cf. (3.11b) and (3.17), is that these forms, stemming as they do from approximate c.f.'s [cf. (3.10a,b)], are not properly scaled, or "normalized", in the sense that each approximating form, P_{1-I} , P_{1-II} , does not yield the correct mean square value of $\langle \varepsilon^2 \rangle_B = 1$ or $\langle \varepsilon^2 \rangle_B = 2\Omega_{2B}(1+\Gamma_B^i)$, cf. (5.14) with (3.2), and the remarks following Eq. (2.94) above. The approximation P_{1-I} , and its associated pdf, W_{1-I} , (4.3), in fact, do not possess a finite mean square on $(0,\infty)$, cf. Sec. (5.3)ff., while P_{1-II} , the "Type A" form and its pdf., W_{1-II} , (4.4), yields $\langle \varepsilon^2 \rangle_{B-II} \neq 1$. Accordingly, since the precise mean square is finite and is known to be $\langle \epsilon^2 \rangle_B = 1$, by calculation from the exact c.f. [cf. (5.10a), and Section 5.2-B], we must suitably scale (or "normalize") w_{1-1} , w_{1-1} (4.5) so that $\langle \epsilon^2 \rangle_B$, cf. (5.6c), exists and is equal to unity. This is done as follows: (i). Let us consider first w_{1-II} , (4.4), and calculate $\langle \varepsilon^2 \rangle_{II}$ on $(0<\varepsilon<\infty)$ according to (5.1). The result is easily seen to be $$\langle \mathcal{E}^{2} \rangle_{B-II} = e^{-A_{B}} \sum_{m=0}^{\infty} \frac{(m/\hat{A}_{B} + \Gamma_{B}^{i})}{(1+\Gamma_{B}^{i})m!} A_{B}^{m} = \frac{4-\alpha}{2-\alpha} + \Gamma_{B}^{i} = 4G_{B}^{2}(\neq 1), \qquad (3.17a)$$ where G_B^2 is given by (3.12b), so that here we require the normalization factor $N_{II}^2 = (4G_B^2)^{-1}$, e.g. $$w_{1}(\mathcal{E})_{B-II-norm} = \frac{1}{4G_{B}^{2}} w_{1}(\mathcal{E})_{B-II} = N_{II}^{2} w_{1}(\mathcal{E})_{B-II}.$$ (3.17b) (Henceforth in the text we write $w_1(\mathcal{E})_{B-II}$, P_{1-II} in normalized form, which are then used for anlytical and numerical calculations in the remaining sections of Part II here.) (ii).The case of w_{1-1} ,(4.3), requires a different approach, since $\langle \mathcal{E}^2 \rangle_{B-1}$ on $(0 < \mathcal{E} < \infty)$ becomes infinite $(0 < \alpha < 2)$, cf. Section 5.3: $[\langle \mathcal{E}^2 \rangle_{B-11}]$ on $(0<\mathcal{E}_B<\infty)$, of course, is finite, cf. (5.6c)]. Here we need to scale \mathcal{E}_0 according to (3.11b) above: $\underline{\mathcal{E}}_0\to \mathcal{E}_0N_I$ (and \vdots $\hat{\mathcal{E}}_0=(\mathcal{E}_0N_I)/2G_B$). The rationale for this is the observation that P_{1-I} (and w_{1-I}) must have the same values in the rayleigh region ($\mathcal{E}_0^2<<1$), where $P_{1-I}\sim0.9$, or 0.99, etc., as does the precise distribution, P_{1-B} , based on the (intractable but) exact c.f. (2.87), hence (3.11b). The scaling factor, N_I , is to be determined by fitting the two approximate forms P_{1-I} , P_{1-II} together by the procedure outlined below, which is based on the canonical properties of the Class B model generally. Note, finally, that the "Class A" form (II) is coupled to the Class B form (I) through the Class B parameter α , and vice versa through the "Class A" parameter Γ_B^I , appearing in G_B , common to both approximations I,II. To combine the suitably scaled P_{l-I} and normalized P_{l-II} to form the composite approximation for Class B interference which is valid for all $\varepsilon_0 \geq 0$ we now use the following desired properties of $P_{l-composite}$, which is sketched in Fig. 3.5II: - (i). $P_{1-I} = P_{1-II}$ in the rayleigh region, e.g. $0 \le \mathcal{E}_0$ small. Equality of the two approximations in the rayleigh region is required, since both must represent the <u>same</u> (small) amplitude behaviour, characteristic of all these PD's. - (ii). $\frac{dP_{1-I}}{d\mathcal{E}_{0}} = \frac{dP_{1-II}}{d\mathcal{E}_{0}}$ in the rayleigh region. - (iii). $P_{1-I} = P_{1-II}$ at the "bendover" or junction point \mathcal{E}_B of the two approximations, cf. Fig.(3.5)II. This point, \mathcal{E}_B , is empirically determined from the data, e.g. from the experimental APD or exceedance probability curve $P_1(\mathcal{E} > \mathcal{E}_0)_{\text{exp.}}$, as described below, cf. (vi). Figure 3.5 (II). Schema of P_{1-B} , eq. (3.20), obtained by joining the two approximating forms (3.11b, 3.17). - (iv). $\left(\frac{dP_{1-I}}{dE} = \frac{dP_{1-II}}{dE}\right)_{E_B}$: the (finite) slopes of the approximating $P_{1-I,II}$ are equal at E_B : this insures a common tangent, i.e., a smooth fit; moreover, we have - (v). $(\frac{d^2P_{1-I}}{d\mathcal{E}^2} = \frac{d^2P_{1-II}}{d\mathcal{E}^2})_{\mathcal{E}_B}$ ($\not=$ 0): this follows as a consequence of (iv), and the continuity of the derivative at \mathcal{E}_B , insuring that the associated pdf's are continuous at the joining point \mathcal{E}_B . However, note that \mathcal{E}_B is not usually a point of inflexion of $P_{1-I,II}$. - (vi). \mathcal{E}_B : this is the point of inflexion $(d^2P_1/d\mathcal{E}_B^2=0)$ of the actual P_1 , and is determined as such (by inspection, usually), of the empirical exceedance probability $P_{1-\exp}$, cf. Fig. (3.5)II. Accordingly, from (3.11b), (3.15), (3.17) we have explicitly for (i)-(v) above: $A_{ij} = A_{ij}$ Fore: (i). $$\frac{\varepsilon_{o}^{2}N_{I}^{2}}{4G_{B}^{2}} \sum_{n=0}^{\infty} \frac{(-1)^{n}(\frac{A_{\alpha}}{2^{\alpha}G_{B}^{\alpha}})^{n}}{n!} \Gamma(1+\frac{\alpha n}{2}) \doteq \frac{\varepsilon_{o}^{2}e^{-A_{B}}}{4G_{B}^{2}} \sum_{m=0}^{\infty} \frac{A_{B}^{m}}{m!} (2\hat{\sigma}_{mB}^{2})^{-1};$$ (3.19a) - [(ii). [Same as (3.19a), without the $2\mathcal{E}_0$ factors common to both members of the equation; however, (ii) is here implied by the <u>form</u> of (i) and does not provide new information.] (3.19b) - (iii). $\frac{A_{\alpha}\Gamma(1+\alpha/2)}{2^{\alpha}G_{B}^{\alpha}\Gamma(1-\alpha/2)}\left(\frac{\mathcal{E}_{B}N_{I}}{2G_{B}}\right)^{-\alpha}1+0_{(iii)}([\mathcal{E}_{B}N_{I}]^{-\alpha},\mathcal{E}_{B}^{2}N_{I}^{2})]=\frac{e^{-A_{B}}}{4G_{B}^{2}}\sum_{m=0}^{\infty}\frac{A_{B}^{m}}{m!}e^{-\mathcal{E}_{B}^{2}/2\hat{\sigma}_{mB}^{2}};$ - (iv). $\frac{A_{\alpha}^{\Gamma}(1+\alpha/2)}{2^{\alpha}G_{B}^{\alpha}\Gamma(1-\alpha/2)} \left(\frac{\mathcal{E}_{B}^{N}I}{2G_{B}}\right)^{-\alpha-1} [1+O_{(iv)}([\mathcal{E}_{B}^{N}I]^{-\alpha}[\mathcal{E}_{B}^{N}I]^{3})] \frac{\mathcal{E}_{B}^{e}-A_{B}^{\alpha}}{4G_{B}^{2}} \sum_{m=0}^{\infty} \frac{A_{B}^{m}}{m!} e^{-\mathcal{E}_{B}^{2}/2\hat{\sigma}_{mB}^{2}};$ (3.19d) - (v),(vi): \mathcal{E}_B cannot be determined analytically from either approximating form $P_{1-I,II}$. It must be established as a point of inflexion from the <u>empirical</u> PD, as noted above. (3.19e) [In using (iii), (iv), we may need at least the next set of "correction" terms in the asymptotic developments of P_{1-I} , $dP_{1-I}/d\mathcal{E}_B$.] We note that (given \mathcal{E}_B) these three relations [(i),(iii),(iv)] are sufficient to determine in principle, any three of the six parameters N_I , α , A_{α} , A_{B} , Ω_{2B} , Γ_B (cf. (3.16a)), when the other three are specified. Later, in Section 6, we shall show how (3.18), (3.19) may be extended to permit us to obtain, from the experimental exceedance probability $P_1(\mathcal{E} > \mathcal{E}_0)_{\text{xpt}}$, the six parameters N_I , α , A_{α} , A_{B} , Ω_{2B} , Γ_B (or, more fundamentally, $[\alpha$, A_{B} , $(\widehat{B}_0^{\alpha})_{B}$, (3.12)). For the illustrative calculations of Figs. 3.6II, 3.7II, it is convenient to preset \mathcal{E}_B ; N_I , α , A_α , and determine A_B , Γ_B^I , Ω_{2B} from (i), (iii), iiv). Other possibilities are: Fix $(\mathcal{E}_B$; N_I , α , Γ_B^I), determine $(A_\alpha, \Omega_{2B}, A_B)$; fix $(\mathcal{E}_B; A_\alpha, \alpha, \Gamma_B^I)$, determine $(N_I, A_B, \Omega_{2B}^\circ)$; fix $(\mathcal{E}_B; A_B, \Gamma_B^I, \Omega_{2B}^\circ)$, determine (N_I, α, A_α) ; fix $(\mathcal{E}_B; N_I, A_B, \Gamma_B^I)$, determine $(A_\alpha, \alpha, \Omega_{2B}^\circ)$ etc. In any case, we have now $$P_{1-B} = P_{1-I}, 0 \le \mathcal{E}_{0} \le \mathcal{E}_{B}; = P_{1-II}, \mathcal{E}_{0} \ge \mathcal{E}_{B},$$ (3.20) with P_{1-I} , P_{1-II} given respectively by (3.11b) and (3.17). The curves of Figs. 3.6II, 3.7II are equivalent to Figs. 3.1.1, 3.1.2 of Furutsu and Ishida [1960], with $(v/\alpha)_{F+I} \rightarrow A_B$, $(a_0/\sigma)_{F+I} \rightarrow (\Gamma_B)^{-1}$, and $(R/\sigma)_{F+I} \rightarrow \mathcal{E}_0$ and exhibit the same kind of "elbow" in the transition region from the rayleigh behaviour (for $\mathcal{E}_0^2 <<1$), with a bend-over to a constant slope $(P_1 \sim e^{-a\mathcal{E}_0^B}, n>0)$, as for Class A noise, when $\mathcal{E}_0 \rightarrow \infty$, cf. Figs.3.1II,3.2II, 3.5II. ## B. Remarks on Hall-Type Models: Finally, we observe that a Hall model [Hall, 1966] may be obtained formally from the P_{1-1} form for the rayleigh and intermediate region $(0 \le \varepsilon_0 \le \varepsilon_B)$, provided we neglect the gaussian contributions (e.g. $\Delta \sigma_G^2 \to 0$), so that the c.f. (2.89) now applies. From (2.89) in (3.4) we accordingly Figure 3.6 (II). The (complete) envelope distribution $P_1(\mathcal{E} > \mathcal{E}_0)_B$, eq. (3.20), calculated for Class B interference for various A_{α} , given α eqs. (3.11, 3.17, 3.19, 6.9, 6.10) . Figure 3.7 (II). The (complete) envelope distribution $P_1(\mathcal{E} > \mathcal{E}_0)_B$, eq. (3.20), calculated for Class B interference for various α , given A_{α} (eqs. 3.11, 3.17, 3.19, 6.9, 6.10). obtain* $$P_{1}(\mathcal{E} > \varepsilon_{0})_{B-1}^{i} \simeq 1 - \varepsilon_{0} \int_{0}^{\infty} J_{1}(\varepsilon_{0} \lambda) e^{-b_{1} \alpha^{A} B^{a^{\alpha} \lambda^{\alpha}}} d\lambda.$$ (3.21) This integral may be evaluated in several ways, convenient for small or large \mathcal{E}_0 . We start with the case convenient for the small values, and employ the following transformations: $$B_{\alpha} = b_{1\alpha} A_{B} a^{\alpha} (= A_{\alpha} \mathcal{E}^{-\alpha}); \quad B_{\alpha} \lambda^{\alpha} = z ; \quad \therefore \lambda = (z/B_{\alpha})^{1/\alpha}$$ $$d\lambda = dz \ z^{(1-\alpha)/\alpha}/\alpha B_{\alpha}^{1/\alpha}$$ (3.22) so that (3.21) becomes now $$P_{1}(\mathcal{E}>\mathcal{E}_{0})_{B-1}^{\dagger} \simeq 1 - \frac{\mathcal{E}_{0}^{\star}}{\alpha} \int_{0}^{\infty} J_{1}(\mathcal{E}_{0}^{\star} z^{1/\alpha}) z^{\frac{1-\alpha}{\alpha}} e^{-z} dz , \mathcal{E}_{0}^{\star} \equiv \mathcal{E}_{0}/B_{\alpha}^{1/\alpha} . \qquad (3.23)$$ Next, let us use the Barnes integral representation of J_1 : $$J_{1}(\mathcal{E}_{0}^{*}z^{1/\alpha}) = \int_{\Gamma} \frac{\Gamma(-s)\mathcal{E}_{0}^{*2s+1}}{\Gamma(s+2)2^{2s+1}} z^{(2s+1)/\alpha} \frac{ds}{2\pi i} , \qquad (3.24)$$ cf. Eq. (13.106) and Fig. 13.22 of [Middleton, 1960], where r is the contour $(-\infty i+c, i\infty+c)$, with c(<0) chosen so that the integral over z in (3.23) is convergent at z=0, e.g. $$\int_0^\infty z^{(2+2s-\alpha)/\alpha} e^{-z} dz = \Gamma(\frac{2+2s}{\alpha}), \text{ Re(s)} > -1, \quad \therefore -1 < c < 0.$$ (3.25) ^{*} Equation (3.21) was obtained earlier by Giordano [1970, Eq. 3.66 therein; Giordano and Haber, 1972, Eq. 24] but was not analytically evaluated. Moreover, $P_{1,1}$, here (as well as the earlier forms [Giordano, 1970], etc.) is not scaled, e.g., $\langle \mathcal{E}^2 \rangle_{B-1} \neq 1$, as discussed at the beginning of A. above. See comments at end of B here. Thus we find that (3.23) becomes $$P_{1}(\mathcal{E} > \mathcal{E}_{0})_{B-1}^{1} \simeq 1 - \frac{\mathcal{E}_{0}^{*}}{\alpha} \int_{\Gamma} \frac{\Gamma(-s)}{\Gamma(s+2)} \Gamma(\frac{2+2s}{\alpha}) \left(\frac{\mathcal{E}_{0}^{*}}{2}\right)^{2s+1} \frac{ds}{2\pi i}$$ (3.26a) $$\frac{1}{2} = \frac{2\epsilon_0^2}{\alpha} \sum_{n=0}^{\infty} \frac{(-1)^n \Gamma(\frac{2+2n}{\alpha}) \epsilon_0^{2n}}{n! (n+1)! A_{\alpha}^{(2+2n)/\alpha}}, \qquad (3.26b)$$ this last on evaluating (3.26a) at the simple poles s = n = 0,1,2,... and using $B_{\alpha} = A_{\alpha} 2^{-\alpha}$, cf. (3.22). Equation (3.26b) exhibits the characteristic rayleigh form (${}^{\circ}\mathcal{E}^2_0$), when \mathcal{E}^2_0 <<1, as expected. Next, for large values of \mathcal{E}_0 (or small values of A_{α}), we return to (3.21) and use the Barnes integral representation for $\exp(-B_{\alpha}\lambda^{\alpha})$, viz: $$e^{-B_{\alpha}\lambda^{\alpha}} = \int_{\Gamma} (-s)B_{\alpha}^{s}\lambda^{\alpha s} \frac{ds}{2\pi i} , \qquad (3.27)$$ to reëxpress (3.21) as $$P_{1}(\mathcal{E} > \mathcal{E}_{0})_{B-I}^{!} \simeq 1 - \int_{\Gamma} \mathcal{E}_{0}^{-\alpha S} \Gamma(-s) \frac{ds}{2\pi i} \int_{0}^{\infty} z^{\alpha S} J_{1}(z) dz, \quad -2 < \text{Re}(\alpha s) < 0,$$ $$\text{Re}(s) > -1.$$ (3.28) To evaluate the z-integral we use [Watson, 1944,p. 391]: $$\int_0^\infty J_{\nu}(t)t^{\mu-\nu-1}dt = \Gamma(\mu/2)/\Gamma(\nu-\mu/2+1)2^{\nu-\mu+1}, Re(\mu)< Re(\nu+3/2)$$ (3.29) with $\nu=1$, $\mu=s+2$ here, and \therefore 0<Re($\alpha s+2$)<2<Re 5/2, as required. Equation (3.28) becomes $$P_{1}(\mathcal{E} > \mathcal{E}_{0})_{B-I}^{i} \simeq 1 - \int_{\Gamma} \frac{\Gamma(-s)\Gamma(1+\frac{\alpha s}{2})}{\Gamma(1-\frac{\alpha s}{2})} 2^{\alpha s} e^{*-\alpha s} \frac{ds}{2\pi i}$$ (3.30a) $$\frac{1}{2} \sum_{n=1}^{\infty} \frac{\Gamma(1+\frac{\alpha s}{2}) (-1)^{n+1} A_{\alpha}^{n}}{\Gamma(1-\frac{\alpha n}{2}) n! \mathcal{E}_{0}^{\alpha n}}, \qquad (3.30b)$$ which shows how this approximation behaves as $\mathcal{E}_0 \to \infty$, viz. $0(\mathcal{E}_0^{-\alpha})$, e.g.: $$P_{1}(\varepsilon > \varepsilon_{0})_{B-1}^{1} \simeq \frac{\Gamma(1+\alpha/2)A_{\alpha}}{\Gamma(1-\alpha/2)\varepsilon_{0}^{\alpha}} - \frac{\Gamma(1+\alpha)}{2\Gamma(1-\alpha)} \frac{A_{\alpha}^{2}}{\varepsilon_{0}^{2\alpha}} + O(\varepsilon_{0}^{-3\alpha}), \quad 0 < \alpha < 2.$$ (3.31) Now in the special case $\alpha = 1$, we may sum the series (3.26b) or (3.30b). Choosing (3.26b) we get $$P_{1}(\mathcal{E} > \mathcal{E}_{0})_{B-1}^{1} \simeq 1-2\mathcal{E}_{0}^{2} \sum_{n=0}^{\infty} \frac{(-1)^{n} \Gamma(2+2n)\mathcal{E}_{0}^{2n}}{n! (n+1)! A_{1}^{2+2n}}, \qquad (3.32a)$$ and since $(n+1)! = (2)_n$, $\Gamma(2+2n) = 2^{2n}(1)_n(3/2)_n$ [Middleton, 1960, (A.1-46b), p. 1078], we find that $$P_1(\varepsilon > \varepsilon_0)_{B-1}^1 \simeq 1-2 \frac{\varepsilon_0^2}{A_1^2} {}_2F_1(1,3/2;2;-2\varepsilon_0^2/A_1^2).$$ (3.32b) From [Middleton, 1960, Eq. (A.1-40c)], the (gaussian) hypergeometric function in (3.32b) is explicitly $$_{2}F_{1}(1,3/2;2;-x^{2}) = (2/-x^{2})(1+x^{2})^{-1/2}\left\{1-\sqrt{1+x^{2}}\right\},$$ so that (3.32b) reduces explicitly to $$P_{1}(\mathcal{E} > \mathcal{E}_{0})_{B-1}^{1} \stackrel{\sim}{=} \frac{1}{\sqrt{1+(2\mathcal{E}_{0}/A_{1})^{2}}}, \quad (\alpha = 1)$$ (3.33) which is a special case of the Hall model ($\theta_{Hall} = 2$), for envelopes [Spaulding and Middleton, 1975, Eq. (2.33)]. [Note that $P_1' \sim \mathcal{E}_0^{-1}$, $\mathcal{E}_0 \rightarrow \infty$, which checks with (3.31): in fact, both (3.31), (3.33) give $P_1' \sim A_1/2\mathcal{E}_0$, as expected. Observe also that $P_1'(\mathcal{E} \geq \mathcal{E}_0 = 0)_{B-I}' = 1$, as required: P_1' is a proper P.D., although it is an inappropriate approximate form when $\Delta \sigma_G$ is at all comparable to $(b_{1\alpha}A_{1\alpha})^{1/\alpha}$, cf. (3.10a); it is also not applicable for very large \mathcal{E}_0 , as explained earlier in A of Sec. 2.7 above. In any case, Hall-type pdf's and P.D.'s are not possible for Class A interference.] Finally, we note that although the above PD's and pdf's, Eq. (3.26b), (3.31), exhibit the correct behaviour as $\mathcal{E}_0 \to 0$, , they are not scaled (in \mathcal{E}_0) properly, to provide the finite mean square needed, e.g. $\langle \mathcal{E}^2 \rangle = 1$, (cf. comments at the beginning of A above). Accordingly, as for P_{1-I} above generally, cf. (3.11b) et seq., we must replace \mathcal{E}_0 by $\mathcal{E}_0 N_I^*$, where the scaling factor N_I^* is determined, along with the four other parameters (A_α , α , Γ_B^* , Ω_{2B}) of the distribution, by the procedure outlined in Section 6C following. [For the Hall model, α = 1 here, and there are then only four parameter values (N_I^* , A_α , Γ_B^* , Ω_{2B}) to be established.]